YAMAHA R 9 B

Estratto Catalogo Yamaha Assi lineari economici (Serie Transervo)

Articoli Tecnici Trasmissioni Industriali
A.T.T.I. Srl

Via F.lli Cervi,3-20063 Cernusco S/N (MI)
Tel. 0292106954 | Fax 0292107261
Email: info@atti.it
Web: www.atti.it

Series

Product Lineup

CLOSED LOOP STEPPING MOTOR SINGLE-AXIS ROBOTS

Excellent characteristics of both stepping motor and servomotor were combined.

Stepping motor single-axis robots "TRANSERVO"

Newly developed vector control method provides functions and performance similar to servomotors.

SS type (Slider type)

Straight model
 P. 130

SS05H-S

Space-saving model (Side mounted motor model)

SG type (Slider type)

Straight model

P. 136

SR type (Rod type standard)

Straight model
P. 137
Space-saving model (Side mounted motor model)
P. 138

SR type (Rod type with support guide)

Straight model

P. 140

Space-saving model (Side mounted motor model)
P. 141

Type	Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum payload (kg) ${ }^{\text {Note } 2}$		Maximum speed ($\mathrm{mm} / \mathrm{sec}$.) ${ }^{\text {Note } 3}$	Stroke (mm)	Page	
				Horizontal	Vertical				
SS type (Slider type) Straight model/ Space-saving model	$\begin{aligned} & \text { SS04-S } \\ & \text { SS04-R (L) } \end{aligned}$	W49 × H59	12	2	1	600	50 to 400	SS04-S:	P. 130
			6	4	2	300			
			2	6	4	100		SS04-R (L):	P. 131
	$\begin{aligned} & \text { SS05-S } \\ & \text { SS05-R (L) } \end{aligned}$	W55 \times H56	20	4	-	1000	50 to 800	SS05-S:	P. 132
			12	6	1	600		SS05-R (L):	
			6	10	2	300			
	$\begin{aligned} & \text { SS05H-S } \\ & \text { SS05H-R (L) } \end{aligned}$	W55 \times H56	20	6	-	1000	50 to 800	SS05H-S:	P. 134
			12	8	2	600 (Horizontal) 500 (Vertical)		SS05H-R (L): P. 135	
			6	12	4	300 (Horizontal) 250 (Vertical)			
SG type (Slider type)	SG07	W65 \times H64	20	36	4	1200	50 to 800	SG07:	P. 136
			12	43	12	800			
			6	46	20	350			
SR type (Rod type standard) Straight model/ Space-saving model	$\begin{aligned} & \text { SR03-S } \\ & \text { SR03-R (L) } \\ & \text { SR03-U } \end{aligned}$	W48 \times H56.5	12	10	4	500	50 to 200	SR03-S:	P. 137
								SR03-R (L):	P. 138
			6	20	8	250		SR03-U:	P. 139
	SR04-S SR04-R (L)	W48 \times H58	12	25	5	500	50 to 300	SR04-S:	P. 142
			6	40	12	250		SR04-R (L):	
			2	45	25	80		SR04-R (L).	
	SR05-S SR05-R (L)	W56.4 \times H71	12	50	10		50 to 300	SR05-S:	P. 146
			6	55	20	150			
			2	60	30	50		SR05-R (L):	P. 147
SR type (Rod type with support guide) Straight model/ Space-saving model	$\begin{aligned} & \hline \text { SRD03-S } \\ & \text { SRD03-U } \end{aligned}$	W105 \times H56.5	12	10	3.5	500	50 to 200	SRD03-S:	P. 140
			6	20	7.5	250		SRD03-U:	P. 141
	SRD04-S SRD04-U	W135 \times H58	12	25	4	500	50 to 300	SRD04-S:	P. 144
			6	40	11	250		SRD04-U:	P. 145
	SRD05-S SRD05-U	W157 \times H71	12	50	8.5	300	50 to 300		
			6	55	18.5	150		SRD05-S:	P. 148
			2	60	28.5	50		SRD05-U:	P. 149

As the slide table type, rotary type, and belt type were added to the product lineup, the design flexibility was extended.

STH type (Slide table type)

| Straight model | P. 150 Space-saving model | P. 151 |
| :--- | :--- | :--- | :--- |

Type	Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum payload (kg) ${ }^{\text {Note } 2}$		Maximum speed (mm/sec.) Note 3	Stroke (mm)	Page	
				Horizontal	Vertical				
STH type (Slide table type)	STH04-S	$\mathrm{W} 45 \times \mathrm{H} 46$	5	6	2	200	50 to 100	STH04-S:	P. 150
	STH04-R (L) ${ }^{\text {Note } 4}$	W73 \times H51	10	4	1	400		STH04-R (L):	P. 151
Straight model/ Space-saving model	STH06	W61 \times H65	8	9	2	150	50 to 150	STH06:	P. 152
	STH06-R (L)	W106 \times H70	16	6	4	400		STH06-R (L):	P. 153

RF type (Rotary type)

| Standard model P. 154 | High rigidity model 155 |
| :--- | :--- | :--- | :--- |

Type	Model	Height (mm)	Torque type	Rotation torque ($\mathrm{N} \cdot \mathrm{m}$)	Maximum pushing torque ($\mathrm{N} \cdot \mathrm{m}$)	Maximum speed $\left(\mathrm{mm} / \mathrm{sec}\right.$.) ${ }^{\text {Note } 3}$	Rotation range (${ }^{\circ}$)	Page
RF type (Rotary type) Standard/High rigidity	$\begin{aligned} & \text { RF02-N } \\ & \text { RF02-S } \end{aligned}$	42 (Standard) 49 (High rigidity)	$\mathrm{N}:$ Standard	0.22	0.11	420	$\begin{aligned} & 310 \text { (RFO2-N) } \\ & 360 \text { (RFO2-S) } \end{aligned}$	$\begin{aligned} & \text { RF02-N: P. } 154 \\ & \text { RF02-S: P. } 157 \end{aligned}$
			H: High torque	0.32	0.16	280		
	$\begin{aligned} & \text { RF03-N } \\ & \text { RF03-S } \end{aligned}$	53 (Standard) 62 (High rigidity)	N : Standard	0.8	0.4	420	$\begin{aligned} & 320 \text { (RF03-N) } \\ & 360 \text { (RF03-S) } \end{aligned}$	$\begin{aligned} & \text { RF03-N: P. } 158 \\ & \text { RF03-S: P. } 161 \end{aligned}$
			H: High torque	1.2	0.6	280		
	RF04-N	68 (Standard) 78 (High rigidity)	$\mathrm{N}:$ Standard	6.6	3.3	420	$320 \text { (RF04-N) }$	RF04-N: P. 162 RF04-S: P. 165
	RF04-S		H: High torque	10	5	280		

BD type (Belt type)

Straight model P. 166

Type	Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum payload (kg) ${ }^{\text {Nole } 2}$		Maximum speed ($\mathrm{mm} / \mathrm{sec}$.) ${ }^{\text {Note } 3}$	Stroke (mm)	Page
				Horizontal	Vertical			
BD type (Belt type)	BD04	$\mathrm{W} 40 \times \mathrm{H} 40$	48	1	-	1100	300 to 1000	BD04: P. 166
	BD05	$\mathrm{W} 58 \times \mathrm{H} 48$	48	5	-	1400	300 to 2000	BD05: P. 167
	BD07	W70 \times H60	48	14	-	1500	300 to 2000	BD07: P. 168

Note 1. The size shows approximate maximum cross sectional size
Note 2. The payload may vary depending on the operation speed. For details, refer to the detailed page of relevant model.

- Allowable ambient temperature for robot installation

Note 2. The payload may vary depending on the operation speed. For details, refer to the detailed page of relevant model.
Note 3. The maximum spe
Note 4.STH04-R (L) with 50 -stroke and brake is not supported.

Common features of TRANSRVO Series

POINT 1

New control method combining the advantages of both the servomotor and stepping motor

The stepping motor provides features that its price is less expensive and hunting (minute vibration) does not occur during stopping. However, this motor has disadvantages that the positional deviation due to step-out occurs (in the open loop mode), the torque decreases greatly in the high speed area, and the power consumption is large during stopping. As YAMAHA's TRANSERVO uses the closed loop control, this ensures complete "no step-out". Furthermore, use of a newly developed vector control method ensures less torque decrease in the high speed area, energy saving, and low noise. The function and performance equivalent to the servomotor are achieved at a low cost even using the stepping motor.

Energy saving

As the basic control is the same as the servomotor, waste power consumption is suppressed. This greatly contributes to the energy saving and CO_{2} reduction.

TRANSERVO combines both merits.

No hunting during stopping

Stop mode without hunting can be set in the same manner as the general stepping motor. So, select this mode as required.

POINT 2

Closed loop control using excellent environment resistant resolver

A resolver with excellent reliability is used to detect the motor position in the same manner as YAMAHA's upper model. The stable position detection can be made even in a poor environment where fine particle dusts or oil mists exist. Additionally, a high resolution of 20480 pulses per revolution is provided.

This resolver is a magnetic position detector. The resolver features a simple structure without using electronic components and optical elements, and less potential failure factors when compared to general optical encoders.
The resolver has high environment resistance and low failure ratio, and is used in a wide variety of fields aiming at reliability such as automobile or aircraft industry.

POINT 3

High resolution (4096, 20480 pulse/rev)
Use of a high resolution makes it possible to maintain excellent controllability. Variations in speed are small and settling time during deceleration stop can be shortened.

POINT 4

Return-to-origin is not needed to shorten the start-up time.

New type robot positioner TS-SH applicable to the high power was newly developed.
This robot positioner is applicable to the absolute position system and does not need any return-to-origin.
The work can be started quickly to shorten the start-up time.

SS type (Slider type) Straight model/Space-saving model

POINT

4-row circular arc groove type 2-point contact guide applicable to even large moment load

A newly developed module guide is employed with a 4-row circular arc groove type 2-point contact guide built into a very compact body similar to the conventional model. This guide maintains a satisfactory rolling movement with less ball differential slip due to its structure even if a large moment load is applied or the installation surface precision is poor, and has characteristics that are difficult to malfunction, such as unusual wear.

POINT

Tact is shortened by high-speed movement.

As advantages of the vector control method are utilized at maximum level, the TRANSERVO maintains a constant payload even in a high-speed range. This greatly contributes to shortening of the tact time. Additionally, by combining this feature with high-lead ball screws, the TRANSRERVO has achieved a maximum speed of $1 \mathrm{~m} / \mathrm{sec}^{\text {Note }}$ which is faster than any single-axis servo motor.
Note. SS05-S/SS05H-S with 20 mm-lead specifications

SG type (Slider type)

POINT

Maximum payload is $\mathbf{4 6} \mathbf{~ k g}$. A maximum payload of 20 kg is supported even with the vertical specifications.

As rigid table slide and $56 \square$ motor are adopted, the payload is increased greatly. A maximum payload of 46 kg is achieved. Up to 20 kg can be transferred even with the vertical specifications.

POINT

Maximum speed is $\mathbf{1 2 0 0} \mathbf{~ m m} / \mathrm{sec}$.

The maximum speed is made 1.2 times faster than that of the current model SS05H.

The tact-up of the equipment can be achieved.

SR type (Rod type) Standard model/Model with support guide

POINT

Long-term maintenance free is achieved.

A lubricator used in the ball screw and a contact scraper installed at the rod inlet and outlet provide maintenance-free operation.

Maintenance interval is greatly extended.

Normal grease lubrication on the ball screw loses a very small amount of oil as the ball screw moves.
The SR type has a lubricator that supplies grease lost over long periods to greatly extend the maintenance interval and ensure near maintenance-free operation ${ }^{\text {Note }}$.
Note. The maintenance-free period is within the running life of the robot.

A dual-layer scraper removes fine foreign objects sticking to the rod to prevent them from entering the inside and troubles caused by foreign objects. Rod rattle is suppressed effectively.

Environment-friendly lubrication system

The lubrication system is environment-friendly as it uses a high density fiber net and supplies an adequate amount of oil to appropriate locations to eliminate waste lubrication.

Prevention of foreign object entry

The dual-layer scraper is in contact with the front of the rod to ensure excellent fine contaminant particle removal performance. The scraper removes fine contaminant particles sticking to the rod through multi steps to prevent them from entering the inside and troubles caused by foreign objects. Additionally, oleo-synthetic foam rubber with a self-lubricating function ensures low-friction resistance.

Tip nozzle for grease application
When applying the grease to the ball screw of the SR type space-saving model SR03-UB or SRD03-UB, use a grease gun with the tip bent.

STH type (Slide table type) Straight model/Space-saving model

POINT

Use of a circulation type linear guide achieves the high rigidity and high accuracy.

- Guide rail is integrated with the table.
- Table deflection amount is small.
- Use of a circulation type linear guide achieves the high rigidity and high accuracy.
- STH06 provides an allowable overhang exceeding that of FLIP-X series T9.
- Space-saving model with the motor built-into the body is also added to the product lineup.
- Suitable for precision assembly.

RF type (Rotary type) Standard model/High rigidity model

POINT

Rotation axis model, first in TRANSERVO series

- Rotation axis model, first in TRANSERVO series
- Thin and compact
- Can be secured from the top or bottom surface.

Hollow hole, through which the tool wiring is passed, is prepared.
Workpiece can be attached easily.

- Motor is built-into the body to achieve the space-saving.
- Standard model or high rigidity model can be selected.

Standard model

Use of highly rigid bearing makes it possible to reduce displacement amount in the radial thrust direction of the table.

High rigidity model

BD type (Belt type) Straight model

POINT

Belt type applicable to long stroke

- Applicable to up to 2000 mm-stroke.
- High speed movement at a speed of up to $1500 \mathrm{~mm} / \mathrm{sec}$. can be made.
- Maximum payload 14 kg
- Main body can be installed without disassembling the robot.
- Shutter is provided as standard equipment. This prevents grease scattering or entry of foreign object.

Shutter is provided as standard equipment.
This shutter covers the guide, ball screw, and belt. The shutter prevents grease scattering or entry of external foreign object.

CLOSED LOOP STEPPING MOTOR SINGLE-AXIS ROBOTS

TRANSERVO SERIES

■ TRANSERVO SPECIFICATION SHEET 128

- Robot ordering method description 129
■ Rod type:Bracket plates129
■ Rod type:Grease gun nozzle tube forspace-saving models129
RF02-N 154
RF02-S 156
RF03-N 158
RF03-S 160
RFO4-N 162
RF04-S 164
BD04 166
BD05 167
BD07 168

Rod type:

Running life distance to life time conversion example $\cdots{ }^{129}$

TRANSERVO

SSO4 130
sso5 132
SS05H 134
SG07 136
SR03 137
SRD03 140
SR04 142
SRD04 144
SR05 146
SRD05 148
STH04 150
STH06 152

TRANSERVO SPECIFICATION SHEET

Type	Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum p	$\text { load }(\mathrm{kg})^{\text {Note }} \text { ? }$	Maximum speed	Stroke (mm)	Detailed info
SS type (Slide type) Straight model/ Space-saving mode	$\begin{aligned} & \text { SSO4-S } \\ & \text { SSO4-R (L) } \end{aligned}$	W49 \times H59	12	2	1	600	50 to 400	P. 130 - P. 131
			6	4	2	300		
			2	6	4	100		
	$\begin{aligned} & \text { SS05-S } \\ & \text { SS05-R (L) } \end{aligned}$	W55 × H56	20	4	-	1000	50 to 800	P.132-P. 133
			12	6	1	600		
			6	10	2	300		
	$\begin{gathered} \text { SSO5H-S } \\ \text { SS05H-R (L) } \end{gathered}$	W55 \times H56	20	6	-	1000	50 to 800	P. 134 - P. 135
			12	8	2	600 (Horizontal) 500 (Vertical)		
			6	12	4	300 (Horizontal) 250 (Vertical)		
SG type (Slide type)	SG07	W65 x H64	20	36	4	1200	50 to 800	P. 136
			12	43	12	800		
			6	46	20	350		
SR Type (Rod type) Straight model/ Space-saving model	$\begin{aligned} & \text { SRO3-S } \\ & \text { SRO3-R (L) } \\ & \text { SR03-U } \end{aligned}$	W48 \times H56.5	12	10	4	500	50 to 200	P.131-P.139
			6	20	8	250		
	$\begin{aligned} & \text { SR04-S } \\ & \text { SR04-R (L) } \end{aligned}$	W48 \times H58	12	25	5	500	50 to 300	P.142-P.143
			6	40	12	250 80		
	$\begin{aligned} & \text { SR05-S } \\ & \text { SR05-R (L) } \end{aligned}$	W56.4 × H71	12	50	10	300	50 to 300	P.146-P.147
			6	55	20	150		
			2	60	30	50		
SR Type (Rod type with support guide) Straight model/ Space-saving model	$\begin{aligned} & \hline \text { SRD03-S } \\ & \text { SRD03-U } \end{aligned}$	W105 \times H56.5	12	10	3.5	500	50 to 200	P.140-P. 141
			6	20	7.5	250		
	SRD04-S SRD04-U	W135 × H58	12	25	4	500	50 to 300	P. 144 - P. 145
			6	40	11	250		
			${ }_{1}^{2}$	45	24	80		
	SRDO5-S	W157 × H71	$\frac{12}{6}$	50	8.5	300	50 to 300	P.148-P.149
			2	60	28.5	50		
STH Type (Slide table type) Straight model/ Space-saving model	STH04-S	W $45 \times \mathrm{H} 46$	5	6	2	200	50 to 100	P. 150 - P. 151
	STH04-R (L) ${ }^{\text {Nole }} 4$	W73 \times H51	10	4	1	400		
	STH06	W61 \times H65	8	9	2	150	50 to 150	P. 152 - P. 153
	STH06-R (L)	W106 \times H70	16	6	4	400		

Type	Model	High (mm)	Torque type	Rotational torque $(\mathrm{N} \cdot \mathrm{~m})$	Maximum pushing torque ($\mathrm{N} \cdot \mathrm{m}$)	Maximum speed $(\mathrm{mm} / \mathrm{sec})^{\text {Note } 3}$	Rotation range (${ }^{\circ}$)	Detailed info page
RF Type (Rotary type) Standard model/High rigidity model High rigidity model	RF02-N	42 (Standard)	$\frac{\mathrm{N}: \text { Standard }}{}$	0.22	0.11	420	$\begin{aligned} & 310 \text { (RFO2-N) } \\ & 360 \text { (RF02-S) } \end{aligned}$	P154-P157
		49 (High rigidity)	$\frac{\mathrm{H} \text { :High torque }}{\mathrm{N}: \text { Standard }}$		0.16 0.4	280		
	$\begin{aligned} & \text { RF03-N } \\ & \text { RF03-S } \end{aligned}$	53 (Standard) 62 (High rigidity)	$\mathrm{N}:$ Standard	1.2	0.4	420	$\begin{aligned} & 320 \text { (RF03-N) } \\ & 360 \text { (RF03-S) } \\ & \hline \end{aligned}$	P. 158 - P. 161
	RFO4-N	${ }_{78}^{68 \text { (Standard) }}$	$\mathrm{N}:$ Standard	6.6	3.3	420	$\begin{aligned} & 320 \text { (RF04-N) } \\ & 360 \text { (RF04-S) } \\ & \hline \end{aligned}$	P.162-P.165
	RF04-S	78 (High rigidity)	H:High torque	10	5	280		

Type	Model	Size (mm) ${ }^{\text {Note } 1}$	Lead (mm)	Maximum payload(kg) ${ }^{\text {Note } 2}$		Maximum speed $(\mathrm{mm} / \mathrm{sec}){ }^{\text {Note } 3}$	Stroke (mm)	Detailed info page
				Horizontal	Vertical			
BD Type (Belt type)	BD04	$\mathrm{W} 40 \times \mathrm{H} 40$	48	1	-	1100	300 to 1000	P166
	BD05	$\mathrm{W} 58 \times \mathrm{H} 48$	48	5	-	1400	300 to 2000	P.167
	BD07	$\mathrm{W} 70 \times \mathrm{H} 60$	48	14	-	1500	300 to 2000	P. 168

Note 1. The size shows approximate maximum cross sectional size.
Note 2. The payload may vary depending on the operation speed. For details, refer to the detailed page of relevant model.
Note 3. The maximum speed may vary depending on the transfer weight or stroke length For details, refer to the detailed page of relevant model

A Precautions for use

- Handling

Fully understand the contents stated in the "TRANSERVO User's Manual" and strictly observe the handling precautions during strictly ob

- Allowable installation ambient temperature [SS/SR type] 0 to $40^{\circ} \mathrm{C}$
[STH/RF/BD type] 5 to $40^{\circ} \mathrm{C}$

\square SR/SRD/STH type Speed vs. payload table

SRD03

SR04

Vertical

| Payload (kg) | Speed $(\mathrm{mm} / \mathrm{sec})$ | $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5 | 200 | 40 |
| 2 | 350 | 70 |
| 1 | 500 | 100 |
| 1 | | |

SR05

SRD04

SRD05

STH04

| | |
| :--- | :--- | :--- | :--- |

Robot ordering method description

In the order format for the YAMAHA single-axis robots TRANSERVO series, the notation (letters/numbers) for the mechanical section is shown linked to the controller section notation
[Example]

- Mechanical	SS05		
- Lead	$\triangleright 6 \mathrm{~mm}$	- Grease	\triangleright Standard
- Model	\triangleright Straight	- Stroke	$\triangleright 600 \mathrm{~mm}$
- Brake	\triangleright Yes	- Cable length $\triangleright 1 \mathrm{~m}$	
- Origin position	\triangleright Standard		

- Controller $>$ TS-S2
- Input /Output selection \triangleright NPN

To find detailed controller information see the controller page.
TS-S2 - RASD, TS-SH P RASD, TS-SD - CHOD

Rod type: Bracket plates

Feet (horizontal mount)	Flange (vertical mount)
Type	Model No.
Feet (2 plates per set)	KCV-M223F-00
Flange (1 piece)	KCV-M224F-00

* Comes with 12 mounting nuts for feet.

SR05/SRD05 bracket plates

Rod type: Running life distance to life time conversion example

This is an example of life time converted from the running life distance listed on each model page for the SR type.

Model	SR04-02SB, Vertical mount, 25 kg payload
Life distance	$500 \mathrm{~km} \rightarrow$ Life time : Approx. 3 years
Operating conditions	100 mm back-and-forth movement, shuttle time 16 seconds (duty: 20\%)
Word conditions	16 hours per day
Work days	240 days per year
Note. Make sure that the rod is not subjected to a radical load.	

Note. Make sure that the rod is not subjected to a radical load.

This nozzle tube is even usable when there is little space around the grease port.

Ordering method

Note 1. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual
Note 2. The robot cable is flexible and resists bending
Note 3. See P. 498 for DIN rail mounting bracket
Note 4. Select this selection when using the gateway function. For details, see P. 60.

Basic specifications

Motor		$42 \square$ Step motor		
Resolution (Pulse/rotation)		20480		
Repeatability ${ }^{\text {Note } 1}$ (mm)		+/-0.02		
Deceleration mechanism		Ball screw 88 (Class C10)		
Maximum motor torque ($\mathrm{N} \cdot \mathrm{m}$)		0.27		
Ball screw lead (mm)		12	6	2
Maximum speed (mm/sec)		600	300	100
Maximum payload (kg)	Horizontal	2	4	6
	Vertical	1	2	4
Max. pressing force (N)		45	90	150
Stroke (mm)		50 to 400 (50mm pitch)		
Overall length (mm)	Horizontal	Stroke+216		
	Vertical	Stroke+261		
Maximum outside dimension of body cross-section (mm)		W49 × H59		

Cable length (m) \qquad Standard: 1 / Option: 3, 5, 10
Note 1. Positioning repeatability in one direction.

R type Motor installed on right

Horizontal installation (Unit: mm					Wall installation					Vertical installation (Unit:mm)			
		A	B	C			A	B	C			A	C
	1kg	807	218	292		1kg	274	204	776			407	408
	2kg	667	107	152		2kg	133	93	611			204	204
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	2kg	687	116	169	$\begin{aligned} & 0 \\ & 0 \\ & \mathbf{0} \\ & \hline \end{aligned}$	2kg	149	102	656	웅	1kg	223	223
	3kg	556	76	112		3 kg	92	62	516		2kg	107	107
	4kg	567	56	84		4 kg	63	43	507		2kg	118	118
$\begin{aligned} & \text { N } \\ & \text { ح్̃ } \\ & \hline \end{aligned}$	4kg	869	61	92	N N On	4kg	72	48	829		4kg	53	53
	6 kg	863	40	60		6 kg	39	29	789				
Note. Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of $10,000 \mathrm{~km}$ (Service life is calculated for 400 mm stroke models).													

(Unit: $\mathrm{N} \cdot \mathrm{m}$)		
MY	MP	MR
16	19	17
Controller		
Controller	Operation method	
$\begin{aligned} & \hline \text { TS-S2 } \\ & \text { TS-SH } \end{aligned}$	I/O point trace / Remote command	
TS-SD	Pulse train control	

SS04 Straight model S

Effective stroke	50	100	150	200	250	300	350	400	Note 1. Stop positions are determined by the mechanical stoppers at both ends. Note 2. Secure the cable with a tie-band 100 mm or less from unit's end face to prevent the cable from being subjected to excessive loads. Note 3. The cable's minimum bend radius is R30. Note 4. These are the weights without a brake. The weights are 0.2 kg heavier when equipped with a brake.
L	266	316	366	416	466	516	566	616	
A	2	3	4	5	6	7	8	9	
B	3	4	5	6	7	8	9	10	
C	50	100	150	200	250	300	350	400	
Weight (kg) ${ }^{\text {Note } 4}$	1.5	1.6	1.7	1.8	2.0	2.1	2.2	2.3	

Ordering method

Note 1．Brake－equipped models can be selected only when the lead is 12 mm or 6 mm
Note 2．If changing from the origin position at the time of purchase，the machine reference amount must be reset．For details， efer to the manual
Note 3．The robot cable is flexible and resists bending
Note 4．See P． 498 for DIN rail mounting bracket
Note 5．Select this selection when using the gateway function．For details，see P． 60.

Basic specifications

Note 1．Positioning repeatability in one direction．
Note 2．When the stroke is longer than 600 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．
Motor installation（Space－saving model）

Brake Note 1
N：With no brak
B：With brake

Lead
20： 20 mm
12： 12 mm

Model

S：Straight model
R：Space－saving model （motor installed on right）
Space－saving mole

SS05 Straight model S

SH

Static loading moment

Horizontal installation（Unit：mm）Wall installation（Unit：mm）Vertical installation（Unit：mm

Note．Distance from center of slider upper surface to carrier center－of－gravity at a guide service life of $10,000 \mathrm{~km}$（Service life is calculated for 600 mm stroke models）．

Effective stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	Stop positions are determined by the mechanical stoppers at both ends．
L		280	330	380	430	480	530	580	630	680	730	780	830	880	930	980	1030	．Secure the cable with a tie－band 100 mm or less from unit＇s end face to prevent the cable from being subjected to excessive loads．
A		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
B		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	Note 3．The cable＇s minimum bend radius is R30．
C		100	150	200	250	300	350	400	450	500	500	500	500	500	500	500	500	Note 4．These are the weights without a brake．The weights are 0.2 kg heavier when equipped with a brake．
Weight（k	g）${ }^{\text {Note } 4}$	2.1	2.3	2.5	2.7	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	4.8	5.0	5 ．When the stroke is longer than 600 mm ，resonance of the ball screw may occur depending on the operation conditions（critical speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left．
Maximum speed for each stroke ${ }^{\text {Note } 5}$ （ $\mathrm{mm} / \mathrm{sec}$ ）	Lead20	1000												933	833	733	633	
	Lead12	600												560	500	440	380	
	Lead6	300												280	250	220	190	
	Speed setting	－－												93\％	83\％	73\％	63\％	

－Ordering method

\square Basic specifications

Motor	$42 \square$ Step motor

Resolution（Pulse／rotation） Repeatability ${ }^{\text {Notet }}$ 1 (mm)

	$42 \square$ Step motor
	20480
	$+/-0.02$
Ball screw $\phi 12($ Class C10）	

Ball screw lead（mm）	20	12	6	
Maximum speed Note2	Horizontal	1000	600	300
	Vertical	-	500	250

Allowable overhang Note

Static loading moment

$\begin{aligned} & \text { Maximum } \\ & \text { payload (kg) } \end{aligned}$				
	Vertical	－	2	4
Max．pressing force（ N ）		36	60	120
Stroke（mm）		50 to 800 （50pitch）		
Overall length （mm）	Horizontal			
	Vertical			
Maximum outside dimension of body cross－section（ mm ）		W55 \times H56		

of body cross－section（mm） Cable length（ m ） \qquad
Note 1．Positioning repeatability in one direction．
Note 2．When the stroke is longer than 600 mm ，resonance of the ball screw may occur depending on the operation conditions（critica screw may occur depending on the operation conditions（critical
speed）．In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table below．

		A	B	C
	2kg	599	225	291
	4kg	366	109	148
	6 kg	352	71	104
	4kg	500	118	179
	6 kg	399	79	118
	8kg	403	56	88
$\begin{aligned} & 0 \\ & \mathbf{0} \\ & \dot{\Xi} \end{aligned}$	6 kg	573	83	136
	8kg	480	61	100
	10kg	442	47	78
	12kg	465	39	64

		（Unit：N．m）
MY	MP	MR
32	38	34

ote．Distance from center of slider upper surface to carrier center－of－gravity at a guide service life of $10,000 \mathrm{~km}$（Service life is calculated for 600 mm stroke models）．

SS05H Straight model S

Effective stroke		50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	Stop positions are determined by the mechanical stoppers at both ends．
	L	336	386	436	486	536	586	636	686	736	786	836	886	936	986	1036	1086	
	A	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	from unit＇s end face to prevent the cable from
	B	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	being subjected to excessive loads．
	C	100	150	200	250	300	350	400	450	500	500	500	500	500	500	500	500	Note 3．The cable＇s minimum bend radius is R30．
Weight（kg）${ }^{\text {Note } 4}$		2.4	2.6	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.5	4.7	4.9	5.1	5.3	These are the weights without a brake．The weights are 0.2 kg heavier when equipped with a brake．
Maximum speed for each stroke ${ }^{\text {Note } 5}$ （mm／sec）	Lead20	1000												933	833	733	633	Note 5．When the stroke is longer than 600 mm ，
	Lead12（Horizontal）	600												560	500	440	380	resonance of the ball screw may occur depending
	Lead12（Vertical）	500														440	380	In this case，reduce the speed setting on the program by referring to the maximum speeds shown in the table at the left．
	Lead6（Horizontal）	300 280 250														220	190	
	Lead6（Vertical）															220	190	
	Speed setting	－												93\％	83\％	73\％	63\％	

SS05H Space-saving model R L

Effective stroke		50	100	150	$\begin{array}{\|c\|} \hline 200 \\ \hline 362.5 \\ \hline \end{array}$	250	300	350	400	450	500	550	600	650	700		800	Note 1. Stop positions are determined by the mechanical stoppers at both ends.	
L		212.52	262.5	312.5		412.5	462.5	512.5	562.5	612.5	662.5	712.5	762.5	812.5	862.5		962.5	Note 2	stoppers at both ends. Secure the cable with a tie-band 80 mm or less
	A	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17		from unit's end face to prevent the cable from
	B	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Note	- Theing subjected to excessive loads. minimum bend radius is R30.
	C	100	150	200	250	300	350	400	450	500	500	500	500	500	500	500	500	Note 4.	These are the weights without a brake. The weights
Weigh	ht (kg) ${ }^{\text {Note } 4}$	1.7	1.9	2.1	2.3	2.5	2.7	2.8	3.0	3.2	3.4	3.6	3.8	4.0	4.2	4.4	4.6	Note 5	are 0.2 kg heavier when equipped with a brake. When the stroke is longer than 600 mm ,
Maximum speed for each stroke ${ }^{\text {Note } 5}$ (mm/sec)	Lead20	1000												933	833	733	633		resonance of the ball screw may occur depending
	Lead12 (Horizontal)	600												560	500	440	380		on the operation conditions (critical speed). In this case, reduce the speed setting on the
	Lead12 (Vertical)	500														440	380		program by referring to the maximum speeds
	Lead6 (Horizontal)	300												280	250	220	190	Note 6	shown in the table at the left.
	Lead6 (Vertical)	250														220	190		asymmetrical. Therefore, if the motor mounting
	Speed setting	-												93\%	83\%	73\%	63\%		orientation is changed, the cover cannot be attached.

ZOrdering method

SG07
Model

Origin position
V: Standard Note 1

Note 3. Select this selection when using the gateway function. For details, see P. 60.

Basic specifications

Static loading moment

Horizontal installation (Unit: mm)					Wall installation			(Unit: mm)	
		A	B	C			A	B	C
-	10kg	3572	458	486	N	10kg	450	402	3261
	25kg	2971	220	245	\%	25kg	117	155	2943
	36kg	3150	140	160	$\stackrel{1}{9}$	36kg	98	85	2520
N	15 kg	3703	363	406	N	15 kg	351	307	3403
	30kg	1962	172	196	\%	30kg	134	117	1663
	43kg	1430	114	131	\pm	43kg	68	59	1070
\circ 0	15 kg	3853	363	414	\bigcirc	15 kg	353	307	3541
	30kg	2105	172	197	\%	30kg	134	117	1752
	46kg	1500	106	122	-	46kg	58	50	1100

		(Unit: $\boldsymbol{N} \cdot \mathrm{m}$)
MY	MP	MR
101	114	101

Controller

TS-SH	I/O point trace / Remote command

Quick reference

Vertical

SG07 Straight model

Effective stroke	
L	
A	
B	
C	
Weight (kg) Note 4	
Maximum speed for each stroke ${ }^{\text {Note } 5}$ (mm/sec)	Lead20 (Horizontal)
	Lead20 (Vertical)
	Lead12 (Horizontal)
	Lead12 (Vertical)
	Lead6 (Horizontal)
	Lead6 (Vertical)
	Speed setting

Note 3. The robot cable is flexible and resists bending Note 4. See P. 498 for DIN rail mounting bracket. Note 5. Select this selection when using the gateway
function. For details, see P. 60 .

Speed vs. payload

Horizontal
25

Note 1. See P. 129 for grease gun nozzles.
Note 2. If changing from the origin position at the time of
purchase, the machine reference amount must be purchase, the machine reference amount must be reset. For details, refer to the manual.

Basic specifications

Motor
Resolution (Pulse/rotation) Repeatability (mm)
Deceleration mechanism
Ball screw lead (mm)
Maximum speed ${ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{sec})$ Maximum payload (kg) Vertical Max. pressing force (N)
Stroke (mm)
Rotating backlash (${ }^{\circ}$) Overall length Horizontal Overa
(mm)
Maximum outside Vertica
of body cross-section (mm)
Cable length (m)
Cable length (m) \quad Standard: $1 /$ Option: 3, 5, 10 . The maximum speed needs to be changed in
See the "Speed vs. payload" graph shown on the right. For details, see P. 128

Running life

5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve.

Controller						
Controller	Operation method					
	Controller	Operation method				
TS-S2	I/O point trace /					
TS-SH	Remote command			\quad	TS-SD	Pulse train control
:---	:---					

SR03 Straight model S
U type Motor installed on top

Dimensions of attached nut View A

Effective stroke	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$	$\mathbf{2 0 0}$
L1	161	211	261	311
\mathbf{L}	249	299	349	399
H	2	3	4	5
K	6	8	10	12
Weight (kg) Note 7	1.1	1.3	1.4	1.6
Note 1. It is possible to apply only the axial load.				
Use the external guide together so that any radial load is not				
applied to the rod.				
Note 2. The orientation of the width across flat part is undefined to the				
base surface.				
Note 3. Use the support guide together to maintain the straightness.				
Note 4. When running the cables, secure cables so that any load is not				
applied to them.				
Note 5. Remove the M4 hex. socket head cap set bolts and use them				
to secure the cables. (Effective screw thread depth 5)				
Note 6. The cable's minimum bend radius is R30.				
Note 7. Models with a brake will be 0.2kg heavier.				
Note 8. Distance to mechanical stopper.				

SR03 Space-saving model (motor installed on right) R

SR03 Space-saving model (motor installed on left)

Note 1. See P. 129 for grease gun nozzles. Note 2. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.			
Basic specifications			
Motor		$42 \square$ Step motor	
Resolution (Pulse/rotation)		20480	
Repeatability (mm)		+/-0.02	
Deceleration mechanism		Ball screw $\mathbf{\phi}^{\text {8 }}$ (Class C10)	
Ball screw lead (mm)		12	6
Maximum speed ${ }^{\text {Note } 1}$ (mm/sec)		500	250
Maximum payload (kg)	Horizontal	10	20
	Vertical	3.5	7.5
Max. pressing force (N)		75	100
Stroke (mm)		50 to 200 (50pitch)	
Lost motion		0.1 mm or less	
Rotating backlash (${ }^{\circ}$)		+/-0.05	
Overall length (mm)	Horizontal	Stroke+236.5	
	Vertical	Stroke+276.5	
Maximum outside dimension of body cross-section (mm)		W48 \times H56.5	
Cable length (m)		Standard: 1 / Option: 3, 5, 10	

Note 3. The robot cable is flexible and resists bending. Note 4. See P. 498 for DIN rail mounting bracket. Note 5. Select this selection when using the gateway

S2	
Robot postioner	Vo
S2: TS-S2 ${ }^{\text {noma }}$	$\frac{\text { NP: NPN }}{\text { PN: PNP }}$
	ca: CC-Link
	PR: Eeverenetilim
	PT: PROFINET

Running life

5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve.

Note. See P. 129 for running life distance to life time conversion example.

Controller	Operation method	Controller	Operation method
TS-S2	I/O point trace /	TS-SD	Pulse train control
TS-SH	Remote command		

SRD03 Straight model S

Ordering method

Model

Mode \begin{tabular}{l}
S: Straight model

\hline R:Space-saving model Note 1

\hline

\hline R.Space-saving model

(motor installed on right)

\hline L. Space-saving model
\end{tabular} Space-saving model Noter

(motor installed on left)
Note 1. See P. 129 for grease gun nozzles
Note 2. When " 2 mm lead" is selected, the origin position annot be changed (to non-motor side)
Note 3. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.

Basic specifications

Motor
Resolution (Pulse/rotation)
Repeatability (mm)
Deceleration mechanism Ball screw lead (mm) Maximum speed ${ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{sec}$ Maximum Horizont
Max. pressing force (N)

| Max. pressing force (N) | 150 | 300 | 600 |
| :--- | :---: | :---: | :---: | :---: |
| Strok | | | |

Stroke (mm)
Rotating backlash (${ }^{\circ}$)
Overall length Horizonta (mm)

Maximum outside Vertical

	$42 \square$ Step motor		
	20480		
$+/-0.02$			
	Ball screw $\phi 8$ (Class C10)	Ball screw $\phi 10$ (Class C10)	
12	6	2	
	500	250	80
	25	40	45
	5	12	25
50 to 300 (50pitch)			
0.1 mm or			

Brake | N: With no brake |
| :--- |
| B: With brake | Origin position Note 2

$\mathrm{~N}: \mathrm{Standard}^{\text {Note } 3}$ N: Standard Note 3 | N: No plate |
| :--- |
| H: With plat | | H. No plate |
| :--- |
| H: With plate | | A. Winh plate |
| :--- |
| V V: With flange |

Note 4. The robot cable is flexible and resists bending Note 5. See P. 498 for DIN rail mounting bracket. Note 6. Select this selection when using the gateway function. For details, see P. 60 .

Stroke 50 mm pitch)
of body cross-sedimension 0.1 mm or less

Cably cross-section (mm)
Cable length (m) \qquad $+/-1.0$
Stroke +263

Speed vs. payload Horizontal

Vertical

accordance with the payload.
For details, see P. 128. Additionally, when the stroke
is long, the maximum speed is decreased due to the
critical speed of the ball screw. See the maximum
speed table shown at the lower portion of the drawing

Motor installation (Space-saving model)

52	
Robot positioner	$1 / 0$
S2: TS-S2 ${ }^{\text {Nole } 5}$	NP: NPN
	PN: PNP
	CC: CC-Link
	DN: DeviceNet ${ }^{\text {TM }}$
	EP: EtherNet/IPTM
	PT: PROFINET
	GW: No I/O boardmbe
SH	
Robot positioner SH: TS-SH	$1 / 0$
	NP: NPN
	PN: PNP
	CC: CC-Link
	DN: DeviceNet ${ }^{\text {TM }}$
	EP: EtherNet/IPTM
	PT: PROFINET
	GW: No I/O boardwib
SD	1
Robot driver	//O cable
SD: TS-SD	1:1m

Running life
 5000 km on models other than shown below.
 Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve

Note. See P. 129 for running life distance to life time conversion example.

Controller				
Controller	Operation method		Controller	Operation method
TS-S2	I/O point trace / Remote command			TS-SD
TS-SH		Pulse train control		

SR04 Straight model

Option: Horizontal installation plate (foot)
Contents of option: Plate, 2 pos., Nut, 12 pcs.
See our robot manuals for additional settings.

SR04 Space-saving model (motor installed on right) R

SR04 Space-saving model (motor installed on left) L

Lead
 12: 12 mm 06: 6 mm (motor installed on top)

Note 1. See P. 129 for grease gun nozzles
Note 2. When " 2 mm lead" is selected, the origin position cannot be changed (to non-motor side).
Note 3. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.

Basic specifications

Motor
Resolution (Pulse/rotation)
 20480
Repeatability (mm)
Deceleration mechanism Ball screw lead (mm) Maximum
Maximum (kg)
Max. pressing force (N)
Stroke (mm)
Lost motion
Rotating backlash (${ }^{\circ}$)
Overall length Horizontal (mm) Vertical

Maximum outside dimension
of body cross-section (mm)
Cable length (m)
Note 1. The maximum speed needs to be changed in accordance with the payload.
See the "Speed vs. payload" graph shown on the right. For details, see P. 128.
Additionally, when the stroke is long, the maximum
speed is decreased due to the critical speed of the ball
screw.
See the maximum speed table shown at the lower
portion of the drawing.

Note 4. The robot cable is flexible and resists bending Note 5. See P. 498 for DIN rail mounting bracket Note 6 . Select this selection when using the gateway function. For details, see P. 60 .

Running life

 example.

5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve

Note. See P. 129 for running life distance to life time conversion

Controller			
Controller	Operation method	Controller	Operation method
TS-S2	I/O point trace /	TS-SD	Pulse train control
TS-SH	Remote command		

SRD04 Straight model S

SRD04 Space-saving model (motor installed on top) U

OOrdering method

SR05 Model

Note 1. See P. 129 for grease gun nozzles
Note 2. When " 2 mm lead" is selected, the origin position cannot be changed (to non-motor side)
Note 3. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.

Basic specifications

Motor
Resolution (Pulse/rotation)
$56 \square$ Step motor
20480

Repeatability (mm)	$+/-0.02$
Deceleration mansm	Ball screw $\$ 12(C l a s s)$

Ball screw lead (mm)
Ball screw lead (mm)
Maximum speed ${ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{se})$

Maximum speed ${ }^{\text {Note } 1}(\mathrm{~mm} / \mathrm{sec})$	
Maximum	Horizontal

Maximum	
payload (kg)	Horizontal
	Vertical

Max. pressing force (N)	250	20	30
Mtr	550	900	

Stroke (mm)
Lost motion
Rotating backlash (${ }^{\circ}$)
Overall length Horizontal (mm) Vertical Maximum outside dimension
of body cross-section (mm)
0.1 mm or less

Cable length (m)
\qquad $+/-1.0$
Stroke +276

Standard: 1 / Option: $3,5,10$ accordance with the payload.
See the "Speed vs. payload" graph shown on the right
For details, see P. 128

Note 4. The robot cable is flexible and resists bending Note 5. See P. 498 for DIN rail mounting bracket Note 6 . Select this selection when using the gateway function. For details, see P. 60 .

Running life

5000 km on models other than shown below.
Running life of only the model shown below becomes shorter than 5000 km depending on the payload, so check the running life curve

Note. See P. 129 for running life distance to life time conversion example.

Controller	Operation method	Controller	Operation method
TS-S2	I/O point trace /	TS-SD	Pulse train control
TS-SH	Remote command		

Motor installation (Space-saving model)

SR05 Space-saving model (motor installed on right)

SR05 Space-saving model (motor installed on left)

Ordering method

Note 1. See P. 129 for grease gun nozzles
Note 2. When "2mm lead" is selected, the origin position cannot be changed (to non-motor side).
Note 3. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.

Motor		$56 \square$ Step motor		
Resolution (Pulse/rotation)		20480		
Repeatability (mm)		+/-0.02		
Deceleration mechanism		Ball screw \$12 (Class C10)		
Ball screw lead (mm)		12	6	2
Maximum speed ${ }^{\text {Note } 1}$ ($\mathrm{mm} / \mathrm{sec}$)		300	150	50
Maximum payload (kg)	Horizontal	50	55	60
	Vertical	8.5	18.5	28.5
Max. pressing force (N)		250	550	900
Stroke (mm)		50 to 300 (50pitch)		
Lost motion		0.1 mm or less		
Rotating backlash (${ }^{\circ}$)		+/-0.05		
Overall length (mm)	Horizontal	Stroke+276		
	Vertical	Stroke+316		
Maximum outside dimension of body cross-section (mm)		W56.4 \times H71		
Cable length (m)		Standard: 1 / Option: 3, 5, 10		

Note 1. The maximum speed needs to be changed in accordance with the payload
See the "Speed vs. payload" graph shown on the right. For details, see P. 128.

Note 4. The robot cable is flexible and resists bending Note 5. See P. 498 for DIN rail mounting bracket Note 6 . Select this selection when using the gateway function. For details, see P. 60 .

Speed vs. payload

 Horizontal

SRD05 Straight model ©

8-M6 $\times 1.0$

STH04
 Model

Model

Lead
$05: 5 \mathrm{~mm}$

Note 1. For the space saving models (R and L), the specifications with brake are applicable to only 100 mm strokes.
Note 2. If changing from the origin position at the time of purchase, the machine reference amount must be reset. For details, refer to the manual.
Note 3. Space-saving models (R and L) with the plate cannot be selected.
Note 4. The robot cable is flexible and resists bending.
Note 5. See P. 498 for DIN rail mounting bracket
Note 6. The robot with the brake cannot use the TS-SD.
Note 7. Select this selection when using the gateway function. For details, see P. 60.

Basic specifications

Motor		$28 \square$ Step motor	
Resolution (Pulse/rotation)		4096	
Repeatability ${ }^{\text {Note } 1}$ (mm)		+/-0.05	
Drive method	Straight	Slide screw	
	Space-saving	Slide screw + belt	
Ball screw lead (mm)		5	10
Maximum speed ${ }^{\text {Note } 2}$ ($\mathrm{mm} / \mathrm{sec}$)		200	400
Maximum payload (kg)	Horizontal	6	4
	Vertical	2	1
Max. pressing force (N)		55	30
Stroke (mm)		50/100	
Maximum outside dimension of body cross-section (mm)	Straight	W45 \times H46	
	Space-saving	$\mathrm{W} 74.5 \times \mathrm{H} 51$	
Cable length (m)		Standard: 1 / Option: 3, 5, 10	
Note 1. Positioning repeatability in one direction. Note 2. The maximum speed needs to be changed in accordance with the payload. See the "Speed vs. payload" graph shown on the right. For details, see P. 128.			

Motor installation (Space-saving model)

S2

SH		
Robot positioner	$1 / 0$	Battery
SH: TS-SH	NP: NPN	B: With battery
	PN: PNP	(Absolute)
	CC: CC-Link	N: None
	DN: DeviceNet ${ }^{\text {TM }}$	(Incremental)
	EP: EtherNet/IPTM	
	PT: PROFINET	
	GW: No I/O board ${ }^{\text {Nob } 7}$	
SD	1	
Robot driver	I/O cable	
SD: TS-SD ${ }^{\text {Noter } 6}$	1: 1 m	

Horizontal installation (Unit: mm) Wall installation (Unit: mm) Vertical installation (Unit: mm)

		A	B	C			A	B	C
	2kg	1534	611	415	운	2kg	435	595	1504
	3kg	949	374	255	\%	3kg	263	359	920
	4kg	656	255	175	\pm	4kg	177	241	629
$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	2kg	1534	611	415	$\begin{aligned} & \text { n } \\ & \stackrel{5}{0} \\ & \stackrel{0}{5} \end{aligned}$	2kg	435	595	1504
	4kg	656	255	175		4kg	177	241	629
	6kg	364	137	95		6 kg	91	123	337

			(Unit: $\mathrm{N} \cdot \mathrm{m}$)	
Stroke	MY	MP	MR	
$\mathbf{5 0 m m}$	26	26	48	
$\mathbf{1 0 0 m m}$	43	43		

(Service life is calculated for 75 mm stroke models.)

\square Speed vs. payload

Horizontal

Controller

Controller Operation method TS-S2 \quad I/O point trace / TS-SH Remote command | TS-SD | Note |
| :--- | :--- | Note. The robot with the brake cannot use the TS-SD

STH04 Straight model S

STH04 Space-saving model (motor installed on right)

STH06

Model

Horizontal installation (Unit: mm)					Wall installation (Unit: mm)					Vertical installation (Unit: mm)				(Unit: $\mathrm{N} \cdot \mathrm{m}$)			
		A	B	C			A	B	C			A	C	Stroke	MY	MP	MR
\bigcirc	2kg	3000	2123	1436	$\begin{array}{r}\stackrel{\circ}{5} \\ \text { ¢ } \\ \hline\end{array}$	2kg	1500	2091	3000	$\stackrel{0}{\substack{\sigma \\ ذ}}$	1 kg	3000	3000	50 mm	77	77	146
¢	4kg	2493	1001	680		4kg	710	975	2443		1.5kg	2458	2457	100 mm	112	112	177
\pm	6 kg	1571	627	428		6kg	440	603	1524		2kg	1837	1837	150 mm	155	155	152
∞	3kg	3000	1375	932	$\begin{gathered} \hline \infty \\ 0 \\ 0 \\ \hline \end{gathered}$	3kg	979	1347	3000	$\stackrel{\infty}{\text { ठ }}$	2kg	1837	1837				
ず	6 kg	1571	627	428		6kg	440	603	1524		3 kg	1217	1216				
\pm	9kg	956	378	260		9kg	260	355	912		4kg	907	906				

Note. Overhang at travelling service life of 3000 km .
(Service life is calculated for 100 mm stroke models.)

\square Speed vs. payload

Horizontal

Vertical

Controller

Controller Operation method TS-S2 \quad I/O point trace / \begin{tabular}{l|l}
TS-SH \& Remote command

\hline

\hline TS-SD \& Note

\hline
\end{tabular} Note. The robot with the brake cannot use the TS-SD.

STH06 Straight mode

STH06 Space-saving model (motor installed on right)

Effective stroke	50	100	150
B	75	48	65
C	4	8	8
D	80	44	66
E	2	4	4
F	80	88	132
G	143	207	285
L	132	196	274
Weight (kg) ${ }^{\text {Note } 6}$	2.5	3.3	4.26
Note 1. Return-to-origin position. Note 2. Table movable range during return-to-origin operation. The values in [] show those when the return-to-origin direction is changed.			
Note 3. The minimum bending radius of the motor cable is R30.			
Note 4. When installing the mechanical main unit using the back facing holes, push the slider toward the origin position on the motor side and insert the hex socket head cap (M6) bolt.			
Note 5. The dimensions of the specifications with the brake are common to those shown above.			

STH06 Space-saving model (motor installed on left)

Cross-sectional
drawing A-A
$\overline{\text { Detailed drawing of }}$ installation hole

Effective stroke	$\mathbf{5 0}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
\mathbf{B}	$\mathbf{7 5}$	48	65
C	4	8	8
\mathbf{D}	80	44	66
E	2	4	4
F	80	88	132
G	143	207	285
L	132	196	274
Weight (kg) $^{\text {Note 6 }}$	2.5	3.3	4.26

Note 1. Return-to-origin position.
Note 2. Table movable range during return-to-origin
operation. The values in [] show those when the
ote 3 . The minimum direction is changed. R30.
Note 4.When installing the mechanical main unit using the back facing holes, push the slider toward the origin position on the motor side and insert the hex 5 The dimensions
The dimensions of the specifications with the
brake are common to those sht . Models with a brake will be 0.34 kg above.

Note 1. The robot cable is flexible and resists bending
Note 3. Select this selection when using the gateway function. For details, see P. 60.

Basic specifications		
Motor	$20 \square$ Step motor	
Resolution (Pulse/rotation)	4096	
Repeatability ${ }^{\text {Note } 1}$ (${ }^{\circ}$)	+/-0.05	
Drive method	Special warm gear + belt	
Torque type	Standard	High torque
Maximum speed ${ }^{\text {Note } 2}$ ($\% / s e c$)	420	280
Rotating torque ($\mathrm{N} \cdot \mathrm{m}$)	0.22	0.32
Max. pushing torque ($\mathrm{N} \cdot \mathrm{m}$)	0.11	0.16
Backlash (${ }^{\circ}$)	+/-0.5	
Max. moment of inertia ${ }^{\text {Note } 3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$)	0.0018	0.004
Cable length (m)	Standard: 1 / Option: 3, 5, 10	
Rotation range (${ }^{\circ}$)	310	

Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while referring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed" graph (reference).
Note 3. For moment of inertia and effective torque details, see P.604.

Acceleration/deceleration: $\omega\left(\% / \mathrm{s}^{2}\right)$

Note. When purchasing the product, set the controller acceleration while carefully
checking the "Moment of inertia vs. Acceleration/Deceleration" and "Effective
torque vs. Speed" graphs
For details, please refer to the TRANSERVO Series User's Manua

RF02-NN Limit rotation specification - Standard model

RF02-NH Limit rotation specification - High rigidity model

OCE compliance OLimitless rotation
Ordering method

Note. When purchasing the product, set the controller acceleration while carefully
checking the "Moment of inertia vs. Acceleration/Deceleration" and "Effective
For details, please refer to the TRANSERVO Series User's Manual

RF02-SN Sensor specification - Standard model

RF02-SH Sensor specification - High rigidity model

\section*{| Weight (kg) | 0.55 |
| :--- | :--- |}

Note 1. This drawing is output under the conditions below.

2 The minimum bending radii of the motor cable
tor cable and sensor cable are R30.
Note 3. The motor cable exit direction is only the left side

RF03-

Note 3. Select this selection when using the gateway function. For details, see P.60.

Effective torque vs. speed

Basic specifications

Motor	$28 \square$ Step motor	
Resolution (Pulse/rotation)	4096	
Repeatability ${ }^{\text {Note } 1}\left({ }^{\circ}\right.$)	+/-0.05	
Drive method	Special warm gear + belt	
Torque type	Standard	High torque
Maximum speed ${ }^{\text {Note } 2}$ ($\% / \mathrm{sec}$)	420	280
Rotating torque ($\mathrm{N} \cdot \mathrm{m}$)	0.8	1.2
Max. pushing torque ($\mathrm{N} \cdot \mathrm{m}$)	0.4	0.6
Backlash (${ }^{\circ}$)	+/-0.5	
Max. moment of inertia ${ }^{\text {Note } 3}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right.$)	0.012	0.027
Cable length (m)	Standard: 1 / Option: 3, 5, 10	
Rotation range (${ }^{\circ}$)	320	
Note 1. Positioning repeatability in one direction. Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while referring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed" graph (reference).		

Note 3. For moment of inertia and effective torque details, see P. 604.

Note. When purchasing the product, set the controller acceleration while carefully checking the "Moment of
torque vs. Speed" graphs
For details, please refer to the TRANSERVO Series User's Manual
RF03-NN Limit rotation specification - Standard model

RF03-NH Limit rotation specification - High rigidity model

RF03-S

OCE compliance OLimitless rotation

Motor	$28 \square$ Step motor	
Resolution (Pulse/rotation)	4096	
Repeatability ${ }^{\text {Note } 1}\left({ }^{\circ}\right.$)	+/-0.05	
Drive method	Special warm gear + belt	
Torque type	Standard	High torque
Maximum speed ${ }^{\text {Note } 2}$ ($\%$ /sec)	420	280
Rotating torque ($\mathrm{N} \cdot \mathrm{m}$)	0.8	1.2
Max. pushing torque ($\mathrm{N} \cdot \mathrm{m}$)	0.4	0.6
Backlash (${ }^{\circ}$)	+/-0.5	
Max. moment of inertia ${ }^{\text {Note } 3}\left(\mathrm{~kg}^{\text {•m2 }}\right.$)	0.012	0.027
Cable length (m)	Standard: 1 / Option: 3, 5, 10	
Rotation range (${ }^{\circ}$)	360	

Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while referring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed" graph (reference).
Note 3. For moment of inertia and effective torque details, see P. 604.

RF03-SN Sensor specification - Standard model

RF03-SH Sensor specification - High rigidity model

Weight (kg) $\quad 1.3$
Note 1. This drawing is output under the conditions below.
Bearing
Torque
High rigidity
Note 2. The minimum bending radii of the motor cable and sensor cable are R30.

OOrdering method

Note 1. The robot cable is flexible and resists bending
Note 2. See P. 498 for DIN rail mounting bracket.
Note 3. Select this selection when using the gateway function. For details, see P.60.

RF04-NH Limit rotation specification - High rigidity model

RF04-S

Ordering method

Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed may vary depending on the moment of inertia. Check the maximum speed while referring to the "Moment of inertia vs. Acceleration/ deceleration" graph and the "Effective torque vs. speed" graph (reference).
Note 3. For moment of inertia and effective torque details, see P. 604.

Note. When purchasing the product, set the controller acceleration while carefully
checking the "Moment of inertia vs. Acceleration/Deceleration" and "Effective
torque vs. Speed" graphs.
For details, please refer to the TRANSERVO Series User's Manual.

RF04-SN Sensor specification - Standard model

RF04-SH Sensor specification - High rigidity model

Ordering method

Note 2. See P. 498 for DIN rail mounting bracket
Note 3. Select this selection when using the gateway function. For details, see P. 60.

Basic specifications

Motor	$28 \square$ Step motor
Resolution (Pulse/rotation)	4096
Repeatability ${ }^{\text {Note } \mathbf{~}(\mathbf{m m})}$	$+/-0.1$
Drive method	Belt
Equivalent lead (mm)	48
Maximum speed ${ }^{\text {Note } \mathbf{2}(\mathbf{m m} / \mathbf{s e c})}$	1100
Maximum payload (kg)	1
Stroke (mm)	$300 / 500 / 600 / 700 / 800 /$
Overall length (mm) (Horizontal installation)	Stroke + 195.5
Maximum outside dimension of body cross-section $(\mathbf{m m})$	W40 \times H101.9
Cable length (m)	Standard: $1 /$ Option: $3,5,10$

Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed needs to be changed in
accordance with the payload
See the "Speed vs. payload" graph shown on the right.

Static loading moment

Horizontal installation (Unit: mm Wall installation (Unit: mm)

	A	B	C		A	B	C
0.5 kg	8036	1950	1504	0.5 kg	1614	1942	8013
1 kg	3933	968	747	1kg	798	961	3969

MY	MP	MR
10	10	20

Basic specifications

Motor	$42 \square$ Step motor
Resolution (Pulse/rotation)	20480
Repeatability ${ }^{\text {Note } 1}$ (mm)	+/-0.1
Drive method	Belt
Equivalent lead (mm)	48
Maximum speed ${ }^{\text {Note } 2}(\mathrm{~mm} / \mathrm{sec}$)	1400
Maximum payload (kg)	5
Stroke (mm)	$\begin{aligned} & \hline \text { 300/500/600/700/800/900/ } \\ & \text { 1000/1200/1500/1800/2000 } \\ & \hline \end{aligned}$
Overall length (mm) (Horizontal installation)	Stroke + 241.8
Maximum outside dimension of body cross-section (mm)	$\mathrm{W} 58 \times \mathrm{H} 123$
Cable length (m)	Standard: 1 / Option: 3, 5, 10

Note 1. Positioning repeatability in one direction
Note 2. The maximum speed needs to be changed in accordance with the payload
See the "Speed vs. payload" graph shown on the right.

\square Allowable overhang Note

Horizontal installation (Unit:mm) Wall installation (Unit: mm)

	A	B	C		A	B	C
1kg	9445	2274	1681	1kg	1784	2312	9545
3kg	2982	702	553	3kg	573	743	3082
5 kg	1689	385	325	5kg	331	429	1789

Note. Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of $10,000 \mathrm{~km}$ (This does not warrant the service life of the product.). (Service life is calculated for 600 mm stroke models.)

Static loading moment

MY	MP	MR
27	27	52

Ordering method

Note 1. The robot cable is flexible and resists bending.
Note 2. See P. 498 for DIN rail mounting bracket

SD	1
Robot diver	Oeable

Note 3. Select this selection when using the gateway function. For details, see P. 60 .

Basic specifications

Motor	$56 \square$ Step motor
Resolution (Pulse/rotation)	20480
Repeatability ${ }^{\text {Note } \mathbf{~}(m m)}$	$+/-0.1$
Drive method	Belt
Equivalent lead (mm)	48
Maximum speed $^{\text {Note } \mathbf{~}(\mathbf{m m} / \mathbf{s e c})}$	1500
Maximum payload (kg)	14
Stroke (mm)	$300 / 500 / 600 / 700 / 800 / 900 /$
Overall length (mm) (Horizontal installation)	Stroke +285.6
Maximum outside dimension of body cross-section (mm)	W70 \times H147.5
Cable length (m)	Standard: $1 /$ Option: 3, 5, 10

Note 1. Positioning repeatability in one direction.
Note 2. The maximum speed needs to be changed in
accordance with the payload
See the "Speed vs. payload" graph shown on the right

	A	B	C		A	B	C
3kg	5767	1353	1247	3kg	1324	1354	5588
8kg	1839	399	458	8kg	474	399	1658
14kg	829	154	254	14kg	255	151	643

Note. Distance from center of slider upper surface to carrier center-of-gravity at a guide service life of $10,000 \mathrm{~km}$ (This does not warrant the service life of the product.). (Service life is calculated for 600 mm stroke models.)

BD07

Effective stroke	300	500	600	700	800	900	1000	1200	1500	1800	2000	Note 1. Position from both ends to the mechanical stopper. (Movable range during return-to-origin) Note 2. When installing using the main unit installation reference surface, make the mating or positioning height 2 mm or more higher than the reference surface since the R -chamfering is provided on the main unit. (Recommended height, 5 mm) Note 3. The minimum bending radius of the motor cable is R30.
L	585.6	785.6	885.6	985.6	1085.6	1185.6	1285.6	485	1785	2085	2285.6	
M	2	3	3	4	4	5	5	6	8	9	10	
N	6	8	8	10	10	12	12	14	18	20	22	
Weight (kg)	4.12	4.8	5.14	5.48	5.82	6.16	6.5	7.18	8.2	9.22	9.9	

